Induced Infiltration Rate Variability and Water Quality

-Part of a cooperative Flowpath Study with the U.S. Geological Survey, Miami University and the Ohio Water Development Authority

William D. Gollnitz
Bruce Whitteberry, P.G.
Jeffrey Vogt

Great Miami River Watershed and Buried Valley Aquifer

Charles M. Bolton Well Field

- Ten vertical wells spaced 600' to 1,125' along 1.5 mile reach of Great Miami River
 - depth 81' to 186'
 - screened lengths 30' to 90'
 - horizontal distance from river 50' to 810'
- Well field production
 - approx. 2,700 gpm (4.0 mgd) each
 - average daily production 15 mgd from 4 wells
 - maximum daily production 34 mgd from 10 wells
 - relies on induced infiltration to sustain yield
 - 30% to 50% surface water under steady state
 - >60% surface water after storm events (??)

Basis for Project: Production Well Microscopic Particulate Analysis Data

- 104 MPA samples collected from 1992 to present
- Collected under various river stage conditions; with emphasis after high river stage events
- 53% of samples were non-detect for "surface water indicators" (algae, etc); 47% contained indicators (65% low risk, 26% moderate risk; 9% high risk)
- Questions:
 - Why do algae occur sporadically in production well samples?
 - Is it due to hydrologic variability?
 - Is GW at risk for Giardia & Cryptosporidium (GWUDISW)?

Goal of GCWW/USGS/MU Flowpath Study

- Goal: To develop a method for evaluating natural filtration at riverbank filtration sites
- Objective: To identify any relationship between changes in the rate of induced infiltration and water quality variations

GCWW - C. M. Bolton Well Field with Flowpath Wells

Factors Influencing the Rate of Infiltration

- River stage elevation
- Ground water elevation
- Streambed permeability
- Streambed thickness
- Streambed area (stage)
- Surface water viscosity (temperature)

Conditions for Minimal Induced Infiltration

Conditions for Maximum Induced Infiltration

GCWW/USGS/Miami U Flowpath Study - Infiltration Monitoring Setup

Methodology - Hydrologic Monitoring

- River stage elevation recorded at half hour intervals at the USGS gauging station
- Ground water elevation
 - recorded at 1 hour intervals at FP1A (between production well and river)
 - recorded at 2 hour intervals at FP1E on opposite side of river
- Surface water temperature recorded at 1 hour intervals at USGS gauging station
- Period Sept, 1999 to May,2001

Methodology - Induced Infiltration Rate Spreadsheet Model

- Estimates the potential average unit rate of infiltration (gpm/ft²)
- Input data
 - river stage 532.1 ft to 545.5 ft (Δ 13.4 ft)
 - ground water elevation under river 526.4 ft to 537.6 ft (Δ 11.1 ft)
 - river water temperature 0.1° C to 29.4° C ($\Delta 29.3^{\circ}$ C)
 - streambed permeability 0.1 to 1.5 ft/day (1.5 ft/day)
 - streambed thickness 0 ft to 5 ft (1 ft ??)
- Assumptions:
 - streambed permeability remains constant at 1.5 ft/day
 - streambed thickness remains constant at 1.0 ft

Methodology - Water Quality

Parameters

turbidity, aerobic spores, particle counts (oocyst & cyst size),
 Heterotrophic Plate Counts, Total Coliform, Microscopic
 Particulate Analysis (total algae), Giardia & Cryptosporidium (Method 1623)

Locations

river, production well 1

Frequency

- turbidity weekly, increased to daily during continuous pumping
- spores, particle counts, TC, HPC weekly & daily during "TOT based event periods"
- MPA, G&C monthly & multiple samples during "TOT based event periods"

Potential Average Unit Rate of Infiltration

Giardia/Cryptosporidium Results

- Great Miami River Giardia
 - ICR Method 12 month geomean 5.63 cysts/100L
 - Method 1623 12 month running ave = 63 cysts/100L
- Great Miami River Cryptosporidium
 - ICR Method 12 month geomean 1.37 oocysts/100L
 - Method 1623 12 month running ave 86 oocysts/100L (Bin 2)
- CMB Production Well 1
 - ICR Method 6 samples no detects
 - Method 1623 12 month running average no detects (Bin 1)
- **Note:** Of 285 ground-water samples (71% analyzed using Method 1623), no G/C detections have been found

Turbidity Results

Spore Results

Particle Count Results (3-5 micron)

Particle Count Results (7-15 micron)

Total Algae Results (Microscopic Particulate Analysis)

Previous MPA Data (1992)

Previous MPA Data (1998)

Algae Concentration versus TOT

Frequency of High Infiltration Events

- Occurrence is low
 - Flowpath Study 576 days
 - -8 "events"
 - typically 2 days of highest rate
 - 16 days of high risk
 - -2.7%
- See "Whitteberry" talk for longer period of record

General Conclusions

- The unit infiltration rate is well below that of slow sand filtration; Peaks occur within the lower range.
- Several surrogate indicators show minor fluctuations
- MPA data (previous & flowpath) suggests that algae TOT is longer than TOT of ground water (still inconclusive; needs more research)
- Not able to establish correlation between surface water indicators and *Giardia/Cryptosporidium*
- Riverbank filtration is highly effective for microbial removal from surface water

